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Abstract: Optical coherence microscopy (OCM) is a promising modality for high resolution 
imaging, but has limited ability to capture large-scale volumetric information about dynamic 
biological processes with cellular resolution. To enhance the throughput of OCM, we 
implemented a hybrid adaptive optics (hyAO) approach that combines computational 
adaptive optics with an intentionally aberrated imaging beam generated via hardware adaptive 
optics. Using hyAO, we demonstrate the depth-equalized illumination and collection ability 
of an astigmatic beam compared to a Gaussian beam for cellular-resolution imaging. With 
this advantage, we achieved volumetric OCM with a higher space-bandwidth-time product 
compared to Gaussian-beam acquisition that employed focus-scanning across depth. HyAO 
was also used to perform volumetric time-lapse OCM imaging of cellular dynamics over a  
1mm × 1mm × 1mm field-of-view with 2 μm isotropic spatial resolution and 3-minute 
temporal resolution. As hyAO is compatible with both spectral-domain and swept-source 
beam-scanning OCM systems, significant further improvements in absolute volumetric 
throughput are possible by use of ultrahigh-speed swept sources. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.4500) Optical coherence tomography; (170.6900) Three-dimensional microscopy; (110.3010) 
Image reconstruction techniques; (110.1080) Active or adaptive optics; 

References and links 

1. P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nat. Rev. Mol. 
Cell Biol. 10(7), 445–457 (2009). 

2. F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, and J. Käs, “Emergent complexity of the 
cytoskeleton: from single filaments to tissue,” Adv. Phys. 62(1), 1–112 (2013). 

3. K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, 
“Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian 
embryos,” Sci. Rep. 7(1), 4165 (2017). 

4. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. 
Hammer 3rd, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. 
Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. 
Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: Imaging molecules 
to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014). 

5. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in 
vitro Fourier ptychographic microscopy,” Optica 2(10), 904–911 (2015). 

6. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. 
Photonics 7(9), 739–745 (2013). 

7. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell 
dynamics in three-dimensional tissue models,” Opt. Express 14(16), 7159–7171 (2006). 

8. S. M. Rey, B. Považay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-
dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics 2(6-7), 370–
379 (2009). 

9. J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K.-S. Lee, “Gabor domain optical 
coherence microscopy,” in 1st Canterbury Workshop and School in Optical Coherence Tomography and 
Adaptive Optics, (SPIE, 2008), 9. 

10. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical 
Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010). 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3137 

#327659 https://doi.org/10.1364/BOE.9.003137 
Journal © 2018 Received 6 Apr 2018; revised 31 May 2018; accepted 31 May 2018; published 15 Jun 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.003137&domain=pdf&date_stamp=2018-06-15


11. K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of 
normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence 
microscopy,” J. Biomed. Opt. 17(12), 126006 (2012). 

12. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for 
deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express 20(3), 2220–2239 (2012). 

13. C. Costa, A. Bradu, J. Rogers, P. Phelan, and A. Podoleanu, “Swept source optical coherence tomography Gabor 
fusion splicing technique for microscopy of thick samples using a deformable mirror,” J. Biomed. Opt. 20(1), 
016012 (2015). 

14. L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam 
for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017). 

15. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with 
micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008). 

16. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, 
“Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express 19(13), 
12141–12155 (2011). 

17. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ 
structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. 
Express 3(10), 2636–2646 (2012). 

18. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier 
domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006). 

19. A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-
resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016). 

20. S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, 
and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine 
brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016). 

21. Y. Chen, L. A. Trinh, J. Fingler, and S. E. Fraser, “3D in vivo imaging with extended-focus optical coherence 
microscopy,” J. Biophotonics 10(11), 1411–1420 (2017). 

22. B. Yin, C. Hyun, J. A. Gardecki, and G. J. Tearney, “Extended depth of focus for coherence-based cellular 
imaging,” Optica 4(8), 959–965 (2017). 

23. A. Curatolo, P. R. T. Munro, D. Lorenser, P. Sreekumar, C. C. Singe, B. F. Kennedy, and D. D. Sampson, 
“Quantifying the influence of Bessel beams on image quality in optical coherence tomography,” Sci. Rep. 6(1), 
23483 (2016). 

24. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence 
microscopy,” Opt. Lett. 23(4), 244–246 (1998). 

25. O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell Motility as Contrast Agent in 
Retinal Explant Imaging With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 58(11), 
4605–4615 (2017). 

26. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in 
optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical 
coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005). 

27. A. Dubois, Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford, 2016). 
28. O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” 

Biomed. Opt. Express 8(2), 622–639 (2017). 
29. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” 

Nat. Phys. 3(2), 129–134 (2007). 
30. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence 

tomography,” Opt. Lett. 36(13), 2390–2392 (2011). 
31. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for 

broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 
7175–7180 (2012). 

32. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based 
computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 
(2012). 

33. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field 
optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013). 

34. Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic 
aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014). 

35. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration 
correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 
6(4), 1124–1134 (2015). 

36. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-
free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016). 

37. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed 
optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 
2988–3000 (2014). 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3138 



38. J. A. Mulligan, F. Bordeleau, C. A. Reinhart-King, and S. G. Adie, “Measurement of dynamic cell-induced 3D 
displacement fields in vitro for traction force optical coherence microscopy,” Biomed. Opt. Express 8(2), 1152–
1171 (2017). 

39. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-
field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. 
Am. A 24(9), 2527–2542 (2007). 

40. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), 
with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007). 

41. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J. Biophotonics 3(4), 187–206 
(2010). 

42. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Käs, “Single cell viability and impact of 
heating by laser absorption,” Eur. Biophys. J. 40(9), 1109–1114 (2011). 

43. S. G. Adie, N. D. Shemonski, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric Synthetic Aperture 
Microscopy (ISAM),” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. 
Fujimoto, eds. (Springer International Publishing, Cham, 2015), pp. 965–1004. 

44. Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy 
and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 
(2016). 

45. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and 
longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 
12–20 (1998). 

46. B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture 
optical coherence imaging,” Opt. Lett. 35(18), 3120–3122 (2010). 

47. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space–bandwidth product of 
optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996). 

48. J. P. Rolland, P. Meemon, S. Murali, I. Kaya, N. Papp, K. P. Thompson, K.-S. E. D. A. P. Lee, and B. Bouma, 
“Gabor Domain Optical Coherence Microscopy,” in Optical Coherence Tomography and Coherence Techniques 
IV, Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7371K. 

49. M. Duelk and K. Hsu, “SLEDs and Swept Source Laser Technology for OCT,” in Optical Coherence 
Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International 
Publishing, Cham, 2015), pp. 527–561. 

50. X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, and J. J. Fredberg, “Physical 
forces during collective cell migration,” Nat. Phys. 5(6), 426–430 (2009). 

51. N. Gjorevski and C. M. Nelson, “Mapping of Mechanical Strains and Stresses around Quiescent Engineered 
Three-Dimensional Epithelial Tissues,” Biophys. J. 103(1), 152–162 (2012). 

52. X. Serra-Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. 
Trepat, “Mechanical waves during tissue expansion,” Nat. Phys. 8(8), 628–634 (2012). 

53. J. Notbohm, S. Banerjee, K. J. C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J. P. Butler, J. J. Fredberg, and M. 
C. Marchetti, “Cellular Contraction and Polarization Drive Collective Cellular Motion,” Biophys. J. 110(12), 
2729–2738 (2016). 

54. L. Przybyla, J. N. Lakins, R. Sunyer, X. Trepat, and V. M. Weaver, “Monitoring developmental force 
distributions in reconstituted embryonic epithelia,” Methods 94, 101–113 (2016). 

55. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 
3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010). 

56. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. 
Opt. Express 4(10), 1890–1908 (2013). 

57. S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz 
using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018). 

58. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field 
parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–
735 (2015). 

59. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher, and R. A. Leitgeb, “Noniterative digital 
aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4(8), 924–931 
(2017). 

60. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial 
resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016). 

61. P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal 
imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018). 

62. P. J. Marchand, A. Bouwens, D. Szlag, D. Nguyen, A. Descloux, M. Sison, S. Coquoz, J. Extermann, and T. 
Lasser, “Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography,” 
Biomed. Opt. Express 8(7), 3343–3359 (2017). 

63. S. Coquoz, A. Bouwens, P. J. Marchand, J. Extermann, and T. Lasser, “Interferometric synthetic aperture 
microscopy for extended focus optical coherence microscopy,” Opt. Express 25(24), 30807–30819 (2017). 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3139 



64. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging 
cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography 
with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011). 

65. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront 
shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 
(2013). 

66. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence 
tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014). 

67. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive 
optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 
(2014). 

68. Y.-Z. Liu, F. A. South, P. Pande, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Optical coherence 
microscopy using hardware and computational adaptive optics,” in Imaging and Applied Optics 2015, OSA 
Technical Digest (online) (Optical Society of America, 2015), AOTh3D.2. 

1. Introduction 

High-throughput imaging over extended volumes and durations is desirable in many cellular 
level biological studies. Such capabilities enable the study of biological dynamics over a wide 
range of spatiotemporal scales, and can be especially beneficial for the investigation of 
collective or emergent behavior, during processes such as embryonic development, tissue 
regeneration, or cancer metastasis [1–3]. Many efforts have been made to achieve high speed 
volumetric imaging at cellular resolution [4–6], but these methods each have their own 
limitations. For example, light sheet microscopy is excellent in high-throughput volumetric 
imaging [4], but its fluorescence-based detection scheme may encounter problems with 
photobleaching and/or phototoxity in long term live imaging. Fourier ptychography achieves 
a high space-bandwidth-time product (SBP-T) in 2D cell imaging [5, 6], but has limited 
performance in 3D imaging of thick samples. 

Optical coherence tomography (OCT) can provide label-free imaging of 3D biological 
samples. Its ability to simultaneously acquire images at multiple depths without axial 
scanning of a beam focus makes OCT a good candidate to fill the gap as a high-throughput 
label-free 3D imaging modality. However, combining high-throughput OCT approaches with 
cellular resolution optical coherence microscopy (OCM) presents significant challenges. The 
application of traditional OCM to the imaging of cellular behavior [7, 8] suffers from the 
trade-off between resolution and depth-of-field (DOF), which stems from the propagation of a 
focused Gaussian beam for beam-scanned imaging. 

Various hardware methods have been proposed to overcome this trade-off in OCM. One 
approach is to synthesize various OCM volumes acquired from multiple focus depths [9–14], 
but the resulting low temporal resolution makes it difficult to observe rapid dynamic 
processes. Illumination with a Bessel beam enables single-shot acquisition of volumetric 
images (due to the extended DOF of Bessel beams) [14–17], and can reach cellular resolution 
[18–22]. However, Bessel beams result in undesirable side lobes in the imaging PSF and 
exhibit lower contrast than Gaussian beams at the focal plane [23]. Alternatively, full-field 
OCM was developed to only acquire the in-focus en face signal [24, 25] by parallelizing 
acquisition in the transverse dimension, but can be more vulnerable to cross-talk [26–28]. On 
the other hand, since OCM provides access to the scattered optical field, computed imaging 
techniques were developed to provide depth-invariant focal plane resolution throughout the 
entire imaged volume [29–36], and have been applied to cellular-resolution imaging including 
in vitro cell studies [37, 38]. However, the reconstruction quality of data acquired by 
Gaussian-beam-scanning systems is limited by decreasing signal strength, due to the lower 
number of scattered photons collected with distance from focus, and thus the reconstructed 
image suffers outside the confocal gate where the collection of photons reflected/scattered 
from the sample is reduced dramatically. Furthermore, theoretical simulations suggest that, 
even when the measured OCT signal is above the shot noise, intensity noise, or thermal noise 
floor, the dynamic range of the OCT system (governed by detector dynamic range) can limit 
the effective imaging depth range [39]. 
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To address the trade-offs faced by the above approaches, we propose a hybrid method 
which leverages the advantages of hardware-based beam manipulation and computational 
techniques. It utilizes hardware adaptive optics (HAO) to equalize the depth-dependent 
optical illumination intensity across depth by performing focusing shifting (similar with 
Gabor domain OCM [9]), and intentionally introducing astigmatism, whose resolution penalty 
can be circumvented with computational adaptive optics (CAO) [31]. The equalization of 
illumination intensity across depth reduces the dynamic range requirement of the 
spectrometer camera in spectral domain OCM (SD-OCM), which may provide benefits for 
cell imaging where a lower peak intensity can alleviate photo-thermal damage to the sample 
[40–42]. Using this hyAO approach, we demonstrate a higher throughput OCM imaging 
capability, quantified by an increase in SBP-T [5] from theoretical simulations, resolution 
phantom measurements, grape imaging, and volumetric time-lapse imaging of the dynamics 
of a fibroblast cell population in 3D cell culture. 

2. Theory 

The small spot size at the focus of a Gaussian beam results in a high intensity, thus limiting 
the allowable incident laser power to avoid damage in live samples. Meanwhile, an astigmatic 
beam splits the single high-intensity focal spot into two line foci, reducing the illumination 
intensity and enabling imaging with a higher incident laser power. In OCM, an astigmatic 
beam has been shown to exhibit an extended signal collection range compared to a Gaussian 
beam, at the cost of a reduced peak SNR [31]. Even though the astigmatic beam suffers from 
a lower SNR than the Gaussian beam at a fixed incident power, the SNR loss can in principle 
be compensated by increasing the incident laser power, as long as the peak illumination 
intensity does not exceed that of the Gaussian case. By applying CAO to mitigate defocus and 
optical aberrations (such as astigmatism) introduced by HAO, we can effectively ‘spread out’ 
the collection of optical energy across depth. As a result, the combination of hardware and 
computational approaches can raise SNR and resolution throughout an imaged volume. As 
discussed in Sect. 4.1, another important consequence of this approach is the reduction of the 
dynamic range required to measure and reconstruct OCM volumes with extended depth 
range. 

The peak illumination intensity ill ( ; )I z k  across depth at optical wavenumber k  of a 

Gaussian beam can be modelled as 

 in
ll 2

c
i ( )

2
( ; ) ,

P

z
I

w
z k

π
==  (1) 

in which incP  is the total incident power of the beam, and ( )w z  is the effective beam radius of 

the optical field distribution ( , , ; )g x y z k  in the xy-plane (for the elliptical spot of an 

astigmatic beam, ( )w z  is taken as the geometric mean of the major and minor axis lengths). 

The optical field distribution ( , , ; )g x y z k  is given by 

 ( ) ( ), ( ), , 0; d d( , , ; ) .x y x yz
i k k i k x k yik z

x y x yG k k z k e e ex kg y z k k
φ

∞
+
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==∬  (2) 

In Eq. (2), , ,x y z  represents the spatial coordinates with the focal plane at z = 0. , ,x y zk k k  

indicate the corresponding spatial frequency coordinates and 2 2 2
z x yk k k k= − −  at optical 

wavenumber k . ( , , ; )x yG k k z k  represents the angular spectrum of the complex field 

distribution ( , , ; )g x y z k . )( ,x yk kφ  denotes the phase profile resulting from any wavefront 

aberrations present in the incident pupil plane. 
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Given an OCM imaging system with a double-pass geometry, the illumination field illg  

and collection field colg  can be written as ( ) ( )ill col, , ; , , ; ); (, ,g x y z k g x y z k g x y z k= = . 

Approximating that scattering results in spherical wave emission, the OCM imaging PSF is 
given in [39], as 

 ( ) ( )ill
2

inc inccol( , , ; ) , , ; (, ; ), , , ;h x y z k g x y z k g x yP P g x yz z kk= =  (3) 

In the post-processing stage, the aberration-corrected PSF ac ( , , )xh y z  can be obtained by 

correcting the wavefront curvature encoded in the phase of the virtual pupil function 
( , , ; )x yH k k z k , which is approximated via a 2D transverse Fourier transform of the imaging 

PSF [31, 43], i.e., 

 ( ) ( )( , ,, ;; d d), x yi k x k y

x y h x y z kH k k z k e x y
∞

− +

−∞

=∬  (4) 

Thus, the aberration free PSF can then be expressed as 

 ( ) ( )ac , )

a

, (

c ( , , ; ) , , ; d dx y x yi k k z i k x k y
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φ
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The optimal aberration correction function ac , ,( )x yk k zφ  can be found via optimization with 

suitable metrics [44], such as the summation of the fourth power of the en face plane signal 
magnitude in this work. Finally, the peak reconstructed intensity for an uncorrected signal 

recI  and for an aberration corrected signal rec,acI  can be calculated as 

 ( ) ( ){ }rec
,

2
m ; ,; ax , ,

x y
I z k h x y z k∝  (6) 

 ( ) ( ){ }2

rec,ac a
,

cmax; , , ; .
x y

I z k h x y z k∝  (7) 

Based on the above formulation, numerical simulations were conducted to compare the 
expected imaging performance between Gaussian versus astigmatic beams, as discussed in 
Section 4.1. In practice, the wavenumber k  above is set to central wavenumber ck  of the 

illumination source for simplicity. 

3. Methods 

3.1 Experimental setup 

We used a SD-OCM system with adaptive optics (see Fig. 1). The system was illuminated by 
a Ti:Sapph broadband laser source (Femtolasers, Integral Element) with 810 nm central 
wavelength and 150 nm bandwidth. In the sample arm, the plane of the deformable mirror 
(Alpao, DM 97-15) was conjugate to the entrance pupil of the objective lens (Olympus, 
UMPlanFl 20XW) to shape the wavefront. The midpoint of the (coupled) X-scan and Y-scan 
galvanometer mirrors was conjugate to the back focal plane of the objective lens to minimize 
the scan path variation, described as coherence gate curvature [45, 46]. After the sample arm 
signal was superimposed with a reference arm signal at a 50:50 coupler, the net signal was 
collected by a spectrometer (Wasatch Photonics, Cobra 800) with a 12-bit line scan camera 
(e2v, Octopus). The laser and spectrometer combination offered a 2 μm full-width-at-half-
maximum (FWHM) axial resolution. The total incident power on the sample was measured to 
be 23 mW, yielding a peak imaging sensitivity of 94 dB (at the Gaussian beam focus) at 300 
μm below zero optical path delay (with a 5 dB/mm sensitivity fall-off). The hyAO method 
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will refer to three illumination schemes in this paper: equal peak intensity illumination (EPII, 
ideal case), equivalent signal illumination (ESI), and equal power illumination (EPI), and 
they are summarized in Table 1. 

An EPII scheme compares system performance when the maximum peak illumination 
intensity using a Gaussian or astigmatic beam is kept constant. This is the ideal scheme under 
which we would like to compare the throughput of both beam types. Since an astigmatic 
beam has lower peak intensity than a Gaussian beam of the same power, EPII is achieved 
when using an astigmatic beam with higher incident power, such that its maximum peak 
intensity matches that of a Gaussian beam with lower power (i.e. the maximum peak 
illumination intensities { }ill,max illmax ( )

z
I I z=  of both beam types match). In this scheme, both 

beams exhibit their best-case signal strength under a given maximum illumination intensity 
constraint, such as may be encountered in live cell imaging settings. 

However, comparison with EPII was not practical with our imaging system. In a double-
pass imaging configuration, this scheme requires the laser power to be altered. Ideally, we 
would increase the laser power to enable the optical intensity at the astigmatic beam line foci 
to be equal to the Gaussian beam case (and also attenuate the reference arm power to be equal 
to the Gaussian beam case). However, our OCT system was setup to perform standard 
Gaussian-beam imaging while operating our laser near its maximum output power. Therefore, 
an alternative ESI scheme was utilized as a substitute for conducting comparisons in a 
resolution phantom. 

In this ESI scheme, the Gaussian beam power was attenuated with an ND filter, so that the 
maximum peak reconstructed intensities { }rec,max recmax ( )

z
I I z=  of the Gaussian and 

astigmatic beams had the same ratio as in the ideal EPII case. As a result, the detected OCT 
images from this scheme can be used to infer the relative performance of the two beams in the 
ideal EPII case. In order to find the correct ND filter attenuation, an intermediate step was 
taken to equalize rec,maxI  at the Gaussian focal plane compared to either of the astigmatic line 

foci planes. We then determined the required attenuation value (linear scale) as the square 
root of the power attenuation from this intermediate step. Further explanation can be found in 
the following paragraphs and Table 1. In this way, although ESI uses a different Gaussian 
beam power compared to the ideal EPII scheme, the detected signal from the two schemes 
will still have the same ratio of rec,maxI , without changing the power of the laser source. 

The drawback of inserting an ND filter into the sample arm is that, in a double-pass 
imaging configuration, the ND filter also attenuates the scattered light collected from the 
sample. This causes the SNR to drop, making signals from deep within a cellular sample fall 
below the OCT system noise floor. Therefore, illumination with the same incident power 
(EPI) was also used to simplify the comparison in the grape sample. However, it should be 
noted that under this scheme, the peak astigmatic beam intensity is lower than the Gaussian. 
In the live cell imaging experiment, the safety threshold is limited by peak intensity [40–42], 
so the astigmatic beam will perform below its potential capabilities during comparisons with 
this illumination scheme. 

After utilizing these illumination schemes, imaging throughput was quantified via the 
SBP-T [5, 47]. For example, the cell imaging from hyAO covers a 1 mm3 FOV with 2 μm 
resolution in 3 minutes, giving a SBP-T of 5 mega-voxels per second. To determine the 
spatial coverage, we also define usable depth range as the depth range over which the 
transverse resolution is no worse than twice the Gaussian beam focal plane resolution, and an 
OCT SNR is at least 10 dB above the depth-dependent noise floor. 

Detailed explanations for these schemes are shown in the following paragraphs, and 
summarized in Table 1. 
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Table 1. Summary of different illumination approaches used for comparing Gaussian 
and astigmatic beams in the simulation and experiments. 

  Incident power onto the sample ill,maxI  rec,maxI  

Equal 
peak 

intensity 
(EPII) 

Gaussian beam P0/α (α-1 laser power reduction) 

0P∝  
0Pα∝   

Astigmatic beam P0 0P∝  

Inter-
mediate 

Gaussian beam P0/α (attenuated by α) 0P∝  0P∝ (attenuated by α) 

Astigmatic beam P0 0P∝  0P∝  

Equivalent 
signal 
(ESI) 

Gaussian beam 0 /P α (attenuated by α1/2) 0Pα∝  0Pα∝ (attenuated by α1/2) 

Astigmatic beam P0 0P∝ 0P∝  
Equal 
power 
(EPI) 

Gaussian beam 
P0 

0Pα∝  2
0Pα∝  

Astigmatic beam 0P∝  0P∝  

 
Note that the astigmatic beam behaves identically in all three cases. It has an illumination 

power of 0P , yielding ill,max 0I P∝  and rec,max 0I P∝ . Under the EPI scheme, ill,maxI  from a 

Gaussian beam isα times greater than from an astigmatic beam of equal power, assuming 

( ) ( )2 2

gauss astmax / maxg gα = , where gaussg  and astg  are the optical field distributions of 

the Gaussian and astigmatic beams, respectively. Given these relations, we may now describe 
the effects of each illumination scheme on a Gaussian beam. 

For EPII, an incident Gaussian beam with illumination power 0 /P α  yields 

( )2

ill,max 0 0 0gaussmax ( / ) ( / )gI P P Pα α α∝ ∝ ⋅ = , and on the detection side provides 

( )22 2
rec,max 0 0 0gaussmax ( / ) ( / )I P Pg Pα α α α∝ ∝ ⋅ =  . 

In order to determine the required ND filter value for achieving ESI, we performed an 
intermediate step. An ND filter was used to attenuate the sample arm beam power by α  
twice (once during illumination, and once during collection). An input illumination power of 

0P  thus yields ill,max 0 0( / )I P Pα α∝ ⋅ =  and 2
rec,max 0 0[( / ) / ]I P Pα α α∝ ⋅ = . This step gives the 

same rec,maxI at detection between the two types of beam, and provides an experimental means 

to measure α , which is required to achieve the ESI scheme. 
Once the linear-scale attenuation α  was measured, we changed the ND filter to attenuate 

the power by α , which gives rec,max 0I Pα∝ . Even though ill,maxI  differ between the 

Gaussian and astigmatic cases, this ESI scheme generates rec,maxI  equivalent to what would 

occur in the ideal EPII case. 
For EPI, an input power of 0P  yields ill,max 0I Pα∝ , and 2

rec,max 0I Pα∝  for a Gaussian 

beam. 

3.3 Sample preparation 

The resolution phantom was made with 0.01% w/w TiO2 particles inside a silicone medium. 
The silicone medium consisted of 1:10:100 w/w/w of RTVb, RTVa (Momentive, RTV615) 
and silicone oil, respectively. 

Samples for imaging cellular dynamics consisted of NIH-3T3 fibroblasts embedded 
within a 3D Matrigel substrate. Fibroblasts were maintained in tissue culture flasks with 
media consisting of Dulbecco’s Modified Eagle Medium (Life Technologies) supplemented 
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effect of the ENOB reduction, besides the advantage of a more equalized signal collection 
across depth. Note that for a swept-source OCM (SS-OCM) system, this bit-depth reduction 
associated with SD-OCM detection is not present because the spectral background can largely 
be filtered out, allowing the full bit depth of the digitizer to span the interference fringes [49]. 
Nevertheless, the reduction in the dynamic range requirement offered from hyAO is still 
beneficial to SS-OCM for applications requiring large depth coverage. 

From the biological perspective, hyAO-OCM may be used to help study cellular behavior 
over a large range of spatiotemporal scales, a key aspect in the investigation of collective cell 
behaviors. One area of research that could benefit from our hyAO approach is traction force 
microscopy (TFM). TFM has contributed to various studies of collective cell mechanobiology 
in both 2D and 3D settings [50–54], with expanded application likely in the future. Traction 
force optical coherence microscopy (TF-OCM) has demonstrated its application in tracking 
single-cell-induced 3D displacement fields [38], and has additional potential for time-lapse 
quantitative imaging of 3D cell traction forces. Current TF-OCM has already utilized CAO to 
extend the DOF [38]. The high volumetric throughput afforded by hyAO could enable TF-
OCM to image 3D traction force dynamics in a larger-volume multi-cellular system. 

In our implementation of hyAO, a few factors have limited the performance of our 
system. One major constraint is the amount of available laser power to be directed into the 
sample arm. Imaging throughput is ultimately limited by safety considerations, which limits 
the sample light exposure. Assuming any optical damage induced by an astigmatic beam is 
comparable to that of a Gaussian beam (with an equivalent peak intensity), a further increase 
in incident power is possible but not achieved in our setup. This enhancement in throughput 
can be accomplished via a more powerful laser to deliver greater incident power and/or a free 
space setup to reduce losses associated with coupling the free-space Ti:Sapph laser into fiber. 
However, the CAO-OCM results (Fig. 4) still demonstrate a partial advantage in depth 
coverage when using an astigmatic beam under the condition of equal illumination power. 

Another factor that limits the volumetric update rate is the A-scan acquisition rate. The 
experimental setup in this study offered up to a 50 kHz A-scan rate, but with improvements to 
the data acquisition pipeline, an A-scan rate of up to 130 kHz is possible with our current line 
scan camera, leading to an increase in volumetric throughput 2.6 times faster than our current 
level. This higher A-scan rate can support the acquisition of volumes comparable to Fig. 5, 
but with higher temporal sampling of ~1 minute. 

From the perspective of optimizing the absolute volumetric throughput, SS-OCM with 
MHz swept-source lasers [55–57] offers an acquisition speed tremendously faster than the 
confocal-type SD-OCM. If hyAO-OCM is implemented with a MHz-SS-OCM source, we 
still expect a significant improvement in volumetric throughput compared to standard OCM 
with Gaussian beam illumination. Thus, this integration can further improve the SBP-T of our 
current cellular-resolution studies by another order of magnitude. Also, we note that there are 
other OCM techniques demonstrating a large throughput, including line field [58, 59], full 
field [30, 36], and Bessel beam [14–22] illumination. Line-field and full-field OCM 
parallelizes the scanning beam for a faster acquisition, but these techniques are more 
vulnerable to cross-talk and multiple scattering than point-scanning methods [26–28]. Note 
that full-field OCM with spatially incoherent illumination reduces cross talk and is less 
sensitive to the deleterious effects of aberrations [60, 61]. However, this technique exhibits 
reduced sensitivity and is not as amenable to motion correction or post-processing techniques 
used by the other variations of OCM [28]. In a confocal acquisition scheme, extended focus 
OCM (xf-OCM) with Bessel beam illumination and Gaussian beam collection optics, and 
hyAO with astigmatic double-pass optics, can both support volumetric imaging with an 
extended depth coverage. At cellular resolution (< 3 μm), xf-OCM can achieve a greater 
depth coverage than a standard Gaussian beam [14–22] (as large as 800 μm in a resolution 
phantom [20]), while astigmatic hyAO shows >10× enhancement in usable depth range and 
can achieve 1 mm depth coverage in a resolution phantom. However, both methods have their 
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own drawbacks. Xf-OCM has undesirable sidelobes in its PSF that degrade the image quality, 
and hyAO-OCM has a stricter requirement on phase stability. In practice, both schemes can 
find their own suitable applications. For example, hyAO-OCM can be a good option for 
volumetric imaging of sparse biological cells, whereas xf-OCM is excellent at angiography 
[62] and optical coherence elastography [19]. In addition, there exists computational 
reconstruction in xf-OCM (xISAM) for DOF extension [63]. This is another example 
showing the synergistic utilization of hardware and computational approaches. Since they are 
based on similar principles, we expect that xISAM and the astigmatic hyAO would have 
comparable performances and similar applications. However, hyAO with an astigmatic beam 
can have a simpler implementation by adding a cylindrical lens, while xISAM needs to 
separate the illumination and collection path, and its PSF still contains sidelobes.

The function of the deformable mirror in our hyAO approach could in principle be 
performed with other alternatives. For example, a cylindrical lens in conjunction with a 
dynamical focus scanning setup would be able to produce a comparable PSF with common-
place off-the-shelf hardware. The advantages of using a deformable mirror in a hyAO 
configuration include the ability to precisely and rapidly adjust the level of astigmatism (line 
foci spacing and/or orientation) in different samples, and to incorporate a wider range of 
aberrations in the future, including hardware AO correction of sample-induced aberrations 
[64–67]. In general, hyAO can incorporate real-time hardware AO aberration correction, or 
post-acquisition CAO [68]. This additional synergy provided by hyAO, where the ‘work’ of 
image formation is split in new ways between hardware and computation, merits further study 
in highly scattering media and could find future applications to volumetric OCM imaging in 
mouse brain, or in vitro tumor spheroid imaging in engineered cell cultures. 

6. Conclusion

We have demonstrated hyAO as a novel approach for high-throughput OCM imaging, and 
achieved a 1mm × 1mm × 1mm field-of-view, 2 μm resolution volumetric imaging of cellular 
dynamics with 3-minute temporal resolution. Compared to Gaussian beam OCM, hyAO 
equalizes the illumination intensity across depth, and enhances the depth coverage and 
throughput by combining CAO with astigmatic illumination and rapid focus shifting. The 
large SBP-T provided by hyAO-OCM enables high-resolution imaging of cellular population 
dynamics over millimeter-scale volumes, with temporal scales spanning minutes-to-hours. 
This capability is potentially beneficial for various biomedical applications such as the study 
of collective cell behaviors in vitro, as well as time-lapse in vivo imaging studies of dynamic 
biological processes. 
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